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 Substances with no strength 

 Deform when forces are applied 

 Include water and gases 

Solid:  

Deforms a fixed amount or breaks completely when a stress is 

applied on it. 

Fluid: 

Deforms continuously as long as any shear stress is applied. 

What is a Fluid? 
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The study of motion and the forces which cause (or prevent) 

the motion.  

Three types: 

Kinematics (kinetics): The description of motion: 

displacement, velocity and acceleration. 

Statics: The study of forces acting on the particles or bodies at 

rest. 

Dynamics: The study of forces acting on the particles and 

bodies in motion. 

What is Mechanics? 
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Stress = Force /Area 

 Shear stress/Tangential stress:  

    The force acting parallel to the surface per unit area of the 

surface. 

 Normal stress:  

    A force acting perpendicular to the surface per unit area of 

the surface. 

 

Type of Stresses? 
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Basic laws of physics: 

 Conservation of mass 

 Conservation of momentum – Newton’s second law of motion 

 Conservation of energy: First law of thermodynamics 

 Second law of thermodynamics 

+ Equation of state 

Fluid properties e.g., density as a function of pressure and 

temperature. 

+ Constitutive laws 

Relationship between the stresses and the deformation of the material. 

How Do We Study Fluid Mechanics? 
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The density ρ of an object is its mass per unit volume: 

 

 

The SI unit for density is kg/m3. Density is also sometimes 

given in g/cm3; to convert g/cm3 to kg/m3, multiply by 1000. 

Water at 4°C has a density of 1 g/cm3 = 1000 kg/m3. 

The specific gravity of a substance is the ratio of its density to 

that of water. 

Density and Specific Gravity 
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It is defined as the internal resistance offered by one layer of 

fluid to the adjacent layer. 

In case of liquids main reason of the viscosity is molecular 

bonding or cohesion. 

In case of gases main reason of viscosity is molecular 

collision. 

Variation of viscosity with temperature:  

In case of liquids, due to increase in temperature the 

viscosity will decrease due to breaking of cohesive bonds 

In case of gases, the viscosity will increase with temperature 

because of molecular collision increases 

 

Viscosity 
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This law states that “shear stress is directly proportional to 

the rate of shear strain”.  

   τ ά  du/dy 

   τ = µdu/dy 

where µ= Dynamic Viscosity having  

Unit: SI: N-S/m2 or Pa-s 

 CGS: Poise= dyne-Sec/cm2 

         1Poise= 0.1 Pa-sec 

1/100 poise is called Centipoise. 

Note: All those fluids are known as Newtonian Fluids for 

which viscosity is constant with respect to the rate of 

deformation. 

Newton’s law of viscosity:  
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 It is defined as the ratio of dynamic viscosity to 

density. 

     ν = µ/ρ 

Units: SI:m2/s 

  CGS: Stoke= cm2/s 

  1 Stoke= 10-4 m2/s 

Note: Dynamic viscosity shows resistance to motion 

between two adjacent layers where as kinematic 

viscosity shows resistance to molecular momentum 

transfer (molecular collision) 

Kinematic Viscosity (ν) 
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 Common fluids, e.g., water, air, mercury obey Newton's law 

of viscosity and are known as Newtonian fluid.  

 Other classes of fluids, e.g., paints, polymer solution, blood 

do not obey the typical linear relationship of stress and 

strain. They are known as Non-Newtonian fluids.  

 

 

 

 

Types of Fluid 
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Non-Newtonian Fluids 
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Shear Stress and Rate of Deformation 

Relationship for different fluids 
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 The surface tension of water provides the necessary wall 

tension for the formation of bubbles with water. The 

tendency to minimize that wall tension pulls the bubbles 

into spherical shapes  

Surface Tension 
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 The pressure difference between the inside and outside of 

a bubble depends upon the surface tension and the radius 

of the bubble. 

 

 The relationship can be obtained by visualizing the 

bubble as two hemispheres and noting that the internal 

pressure which tends to push the hemispheres apart is 

counteracted by the surface tension acting around the 

circumference of the circle. 

Surface Tension 
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Surface Tension 
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 The net upward force on the top hemisphere of 

the bubble is just the pressure difference times the area of 

the equatorial circle: 

 

Surface Tension 
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 The surface tension force downward around circle is 

twice the surface tension times the circumference, since 

two surfaces contribute to the force: 

Surface Tension 
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 This gives 

 

 

 

 

 

 This latter case also applies to the case of a bubble 

surrounded by a liquid 

Surface Tension 
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 Capillary action is the result of adhesion and surface 

tension. Adhesion of water to the walls of a vessel will 

cause an upward force on the liquid at the edges and 

result in a meniscus which turns upward. The surface 

tension acts to hold the surface intact, so instead of just 

the edges moving upward, the whole liquid surface is 

dragged upward. 

Capillarity 
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 Capillary action occurs when the adhesion to the walls is 

stronger than the cohesive forces between the liquid 

molecules. The height to which capillary action will take 

water in a uniform circular tube is limited by surface 

tension. Acting around the circumference, the upward 

force is 

 

Capillarity 
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 The height h to which capillary action will lift 

water depends upon the weight of water which the 

surface tension will lift: 

Capillarity 
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Pressure in Fluids 

The pressure at a depth h below the surface of the liquid is due 

to the weight of the liquid above it. We can quickly calculate: 

 

 

 

 This relation is valid for any 

liquid whose density  does not 

change with depth. 
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Atmospheric Pressure and Gauge 

Pressure 

At sea level the atmospheric pressure is about 

1.013 × 105 N/m2; this is called one atmosphere (atm). 

Another unit of pressure is the bar: 

1 bar = 1.00 × 105 N/m2  

Standard atmospheric pressure is just over 1 bar. 

This pressure does not crush us, as our cells maintain an 

internal pressure that balances it. 
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Atmospheric Pressure and Gauge 

Pressure 
Most pressure gauges measure the pressure above the 

atmospheric pressure—this is called the gauge pressure. 

The absolute pressure is the sum of the atmospheric pressure and 

the gauge pressure. 

P = PA + PG 
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 The variation of pressure in vertical direction in a fluid is 

directly proportional to specific weight. 

 dp/dh = ρg=w 

 P =ρgh (N/m2) 

 Note: When you move vertically down in a fluid, the pressure 

increases as +ρgh. 

  When you move vertically up in a fluid, the pressure 

decreases as -ρgh. 

 On the same horizontal level thee is no change of pressure. 

Hydrostatic Law 
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Pascal’s Principle 
If an external pressure is applied to a confined fluid, the pressure 

at every point within the fluid increases by that amount. 

This principle is used, for example, in hydraulic lifts and 

hydraulic brakes. 
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 There are a number of 

different types of pressure 

gauges. This one is an open-

tube manometer. The pressure 

in the open end is 

atmospheric pressure; the 

pressure being measured will 

cause the fluid to rise until 

the pressures on both sides at 

the same height are equal. 

 

Measurement of Pressure; Gauges and 

the Barometer 
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Measurement of Pressure; Gauges and 

the Barometer 

Here are two more devices for 

measuring pressure: the aneroid 

gauge and the tire pressure gauge. 

32 



Measurement of Pressure; Gauges and 

the Barometer 

This is a mercury barometer, 

developed by Torricelli to measure 

atmospheric pressure. The height of 

the column of mercury is such that 

the pressure in the tube at the surface 

level is 1 atm. 

Therefore, pressure is often quoted 

in millimeters (or inches) of 

mercury.  
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Buoyancy and Archimedes’ Principle 

This is an object submerged in a fluid. There is a net force on 

the object because the pressures at the top and bottom of it are 

different. 

The buoyant force is found to be 

the upward force on the same 

volume of water: 
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Buoyancy and Archimedes’ Principle 

The net force on the 

object is then the 

difference between 

the buoyant force 

and the gravitational 

force.  
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Buoyancy and Archimedes’ Principle 

If the object’s density is 

less than that of water, 

there will be an upward net 

force on it, and it will rise 

until it is partially  

out of the water. 
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Buoyancy and Archimedes’ Principle 

For a floating object, the fraction that is submerged is given 

by the ratio of the object’s density to that of the fluid. 
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Buoyancy and Archimedes’ Principle 

This principle also works in the air; 

this is why hot-air and helium balloons 

rise. 
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 Steady and unsteady flow 

 Steady flow: flow in which fluid properties are not changing 

w.r.t. time but at given cross section. 

 Unsteady flow: flow in which fluid properties are changing 

w.r.t. time but at given cross section. 

 Uniform and Non uniform flow 

 Uniform flow: Fluid is said to be in uniform flow if the 

velocity is not changing w.r.t. cross section but at a given 

interval of time. 

 Non- uniform flow: Fluid is said to be in uniform flow if the 

velocity is changing w.r.t. cross section but at a given interval 

of time. 

 

Types of Fluid Flow 
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 Laminar and Turbulent flow 

 Laminar flow: A laminar flow is one in which fluid 

flow is in the form of layers and there is no intermixing 

of fluid particles or molecular momentum transfer. 

 Turbulent flow: A turbulent flow is one in which there 

is high order of intermixing of fluid particles. 

 Rotational and irrotational flow 

 Rotational flow: If the fluid particles rotate about their 

axis or centre of mass. 

Types of Fluid Flow 
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 Streamlines are a family of curves that are 

instantaneously tangent to the velocity vector of the flow. These 

show the direction a fluid element will travel in at any point in 

time. 

 Streak lines are the locus of points of all the fluid particles that 

have passed continuously through a particular spatial point in 

the past. Dye steadily injected into the fluid at a fixed point 

extends along a streak line. 

 Path lines are the trajectories that individual fluid particles 

follow. These can be thought of as a "recording" of the path a 

fluid element in the flow takes over a certain period. The 

direction the path takes will be determined by the streamlines of 

the fluid at each moment in time. 

 

Tools used to study fluid flow 
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 A useful technique in fluid flow analysis is to consider 

only a part of the total fluid in isolation from the rest.  

 This can be done by imagining a tubular surface formed 

by streamlines along which the fluid flows. This tubular 

surface is known as a stream tube. 

 

 

Stream tube 
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 The "walls" of a stream tube are made of streamlines. 

 Fluid cannot flow across a streamline, so fluid cannot cross a 

stream tube wall.  

 The stream tube can often be viewed as a solid walled pipe. 

A stream tube is not a pipe - it differs in unsteady flow as the 

walls will move with time.  

  It differs because the "wall" is moving with the fluid 

Stream tube 
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Generalized Continuity Equation 
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Conservation of mass: Continuity 

Equation: 

“The water all has to go somewhere” 

The rate a fluid enters a pipe must equal the rate the fluid leaves the pipe.  
i.e. There can be no sources or sinks of fluid. 45 



 

Conservation of mass: Continuity 

Equation: 

v1 v2 

vA
t

m
rateflow 




:

fluid in  

tvAVm  111 

v1t 

A1 

v2t 

A2 

tvAVm  222 

2211: vAvAeqncontinuity 
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 Q. A river is 40m wide, 2.2m deep and flows at 4.5 m/s.  
It passes through a 3.7-m wide gorge, where the flow 
rate increases to 6.0 m/s.  How deep is the gorge? 

 

Conservation of mass: Continuity 

Equation: 
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Conservation of mass: Continuity 

Equation: 

y1 

v2t 
y2 

v1t 

Energy per unit 
volume constvpvp  2

22
1

2

2

12
1

1 

Total energy per unit volume is constant 
at any point in fluid. 

constygvp   2

2
1

What happens to the energy density of the fluid if I raise the ends ? 
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 Q. Find the velocity of water leaving a tank through a 
hole in the side 1 metre below the water level. 

 

Conservation of mass: Continuity 

Equation: 
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Momentum Conservation Equation 

below.shown  as zyxelement  small aConsider 

leration)mass)(acce(Force:law second sNewton' From





x 

y 

z 

The element experiences an acceleration

DV
m ( )

Dt

as it is under the action of various forces:

normal stresses, shear stresses, and gravitational force.

V V V V
x y z u v w

t x y z
   

    
    

    

xx
xx x y z

x


   

 
 

 
xx y z  

yx

yx y x z
y


   

 
 

 

yx x z  50 



Momentum Balance (cont.) 

yxxx zx

Net force acting along the x-direction:

x x x
xx y z x y z x y z g x y z
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 
  

  

Normal stress Shear stresses (note: zx: shear stress acting 

on surfaces perpendicular to the z-axis, not 

shown in previous slide) 

Body force 

yxxx zx

The differential momentum equation along the x-direction is

x x x

similar equations can be derived along the y & z directions

x

u u u u
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Euler’s Equations 

xx yy zz

For an inviscid flow, the shear stresses are zero and the normal stresses

are simply the pressure: 0 for all shear stresses, 

x

Similar equations for

x
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     

Note: Integration of  the Euler’s equations along a streamline will give rise to the Bernoulli’s 

equation. 
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Navier and Stokes Equations 

For a viscous flow, the relationships between the normal/shear stresses and the rate of  

deformation (velocity field variation) can be determined by making a simple assumption.  That is, 

the stresses are linearly related to the rate of  deformation (Newtonian fluid).  The proportional 

constant for the relation is the dynamic viscosity of  the fluid (m).  Based on this, Navier and 

Stokes derived the famous Navier-Stokes equations: 
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Bernoulli’s Equation 

A fluid can also change its 

height. By looking at the work 

done as it moves, we find: 

 

 

This is Bernoulli’s equation. 

One thing it tells us is that as 

the speed goes up, the 

pressure goes down. 
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Using Bernoulli’s principle, we find that the speed of fluid 

coming from a spigot on an open tank is: 

 

 

 

This is called Torricelli’s 

theorem.  

Applications of Bernoulli’s Principle: 

Torricelli, Airplanes, Baseballs, Blood 

Flow 
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Applications of Bernoulli’s Principle: 

Torricelli, Airplanes, Baseballs, Blood 

Flow 

A sailboat can move against 

the wind, using the pressure 

differences on each side of 

the sail, and using the keel to 

keep from going sideways. 
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Applications of Bernoulli’s Principle: 

Torricelli, Airplanes, Baseballs, Blood Flow 

A ball’s path will curve due 

to its spin, which results in 

the air speeds on the two 

sides of the ball not being 

equal. 
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Applications of Bernoulli’s Principle: 

Torricelli, Airplanes, Baseballs, Blood Flow 

A person with 

constricted arteries will 

find that they may 

experience a temporary 

lack of blood to the brain 

as blood speeds up to get 

past the constriction, 

thereby reducing the 

pressure. 
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Applications of Bernoulli’s Principle: 

Torricelli, Airplanes, Baseballs, Blood Flow 

A venturi meter can be used to measure fluid flow by 

measuring pressure differences. 
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Applications of Bernoulli’s Principle: 

Torricelli, Airplanes, Baseballs, Blood Flow 

Air flow across the top helps smoke go up a chimney, and air 

flow over multiple openings can provide the needed 

circulation in underground burrows. 
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Flow in Tubes; Poiseuille’s Equation, 

Blood Flow  
The rate of flow in a fluid in a round tube depends on the 

viscosity of the fluid, the pressure difference, and the 

dimensions of the tube. 

The volume flow rate is proportional to the pressure 

difference, inversely proportional to the length of the tube and 

to the pressure difference, and proportional to the fourth 

power of the radius of the tube.  
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Flow in Tubes; Poiseuille’s Equation, 

Blood Flow  

This has consequences for 

blood flow—if the radius of 

the artery is half what it 

should be, the pressure has 

to increase by a factor of 16 

to keep the same flow. 

Usually the heart cannot 

work that hard, but blood 

pressure goes up as it tries. 
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Drag on a surface – 2 types 

 Pressure stress / form drag 

 

 

 

 Shear stress / skin friction drag 

 

 

 

 A boundary layer forms due to skin friction 
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Boundary layer – velocity profile 

 Far from the surface, the fluid velocity 

is unaffected.   

 In a thin region near the surface, the 

velocity is reduced 

 

 Which is the “most correct” velocity 

profile? 

…this is a good 

approximation near the 

“front” of  the plate 
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Boundary layer growth 

 The free stream velocity is u0, but next to the 
plate, the flow is reduced by drag 

 Farther along the plate, the affect of the drag is 
felt by more of the stream, and because of this 

 The boundary layer grows 
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Boundary layer transition 

 At a certain point, viscous forces become to small relative 
to inertial forces to damp fluctuations 

 

 

 

 

 

 

 The flow transitions to turbulence 

 Important parameters: 
 Viscosity μ, density ρ 

 Distance, x 

 Velocity UO 

 Reynolds number combines these into one number 




m




xUxU
Re OO

x
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First focus on “laminar” boundary layer 

 A practical “outer edge” of the boundary layer is 
where u = uo x 99% 

 

 

 

 

 

 

 

 Across the boundary layer there is a velocity 
gradient du/dy that we will use to determine τ 
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 Let’s look at the growth of the boundary layer 

quantitatively. 
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 The velocity profiles grow along the surface 

 

 

 

 

 

 What determines the growth rate and flow profile? 
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Laminar Flat-Plate  

Boundary Layer: Exact Solution 

• Governing Equations 

• For 
incompressible 
steady 2D 
cases: 
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Laminar Flat-Plate 
Boundary Layer: Exact Solution 

• Boundary Conditions 

• Equations are Coupled, Nonlinear, Partial Differential 
Equations 

• Blassius Solution: 

– Transform to single, higher-order, nonlinear, ordinary 
differential equation 
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Laminar Flat-Plate 
Boundary Layer: Exact Solution 

72 



Boundary Layer Procedure 

 Before defining and * and are there analytical 

solutions to the BL equations? 

 Unfortunately, NO 

 Blasius Similarity Solution boundary layer on a flat 

plate, constant edge velocity, zero external 

pressure gradient
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Blasius Similarity Solution 

 Blasius introduced similarity variables 

 

 

 

 This reduces the BLE to 

 

 

 

 

 This ODE can be solved using 
Runge-Kutta technique 

 Result is a BL profile which holds at 
every station along the flat plate 
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Blasius Similarity Solution 
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Blasius Similarity Solution 

 Boundary layer thickness can be computed by assuming 

that  corresponds to point where U/Ue = 0.990.  At this 

point,  = 4.91, therefore 

 

 

 

 Wall shear stress w  and friction coefficient Cf,x can be 

directly related to Blasius solution 

Recall 
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Displacement Thickness 

 Displacement thickness * is the 

imaginary increase in thickness of the 

wall (or body), as seen by the outer flow, 

and is due to the effect of a growing BL. 

 Expression for * is based upon control 

volume analysis of conservation of mass 

 

 

 

 Blasius profile for laminar BL can be 

integrated to give 

(1/3 of  ) 
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Momentum Thickness 

 Momentum thickness  is another 

measure of boundary layer 

thickness. 

 Defined as the loss of momentum 

flux per unit width divided by U2 

due to the presence of the growing 

BL. 

 Derived using CV analysis. 

 for Blasius solution, 

identical to Cf,x 
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Turbulent Boundary Layer 

Illustration of  unsteadiness of  a  

turbulent BL 

Black lines:  instantaneous 

Pink line:  time-averaged 

Comparison of  laminar and  

turbulent BL profiles 
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Turbulent Boundary Layer 

 All BL variables [U(y), , *, ] are determined 

empirically. 

 One common empirical approximation for the time-

averaged velocity profile is the one-seventh-power 

law 
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Results of Numerical Analysis 
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Momentum Integral Equation 

• Provides Approximate Alternative to 
Exact (Blassius) Solution 
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Momentum Integral Equation 

Equation is used to estimate the boundary-layer thickness 
as a function of x: 

1. Obtain a first approximation to the free stream velocity 
distribution, U(x).  The pressure in the boundary layer is 
related to the free stream velocity, U(x), using the Bernoulli 
equation 
 

2. Assume a reasonable velocity-profile shape inside the 
boundary layer 
 

3. Derive an expression for tw using the results obtained from 
item 2 
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Pressure Gradients in Boundary-Layer Flow 
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Introduction- Pipe Flow 

• Average velocity in a pipe 

– Recall - because of the no-slip 

condition, the velocity at the walls of 

a pipe or duct flow is zero 

– We are often interested only in Vavg, 

which we usually call just V (drop the 

subscript for convenience) 

– Keep in mind that the no-slip 

condition causes shear stress and 

friction along the pipe walls 

 

Friction force of wall on fluid 
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Introduction 

• For pipes of constant 

diameter and incompressible 

flow 

– Vavg stays the same down 

the pipe, even if the 

velocity profile changes 

• Why? Conservation 

of Mass 
Vavg Vavg 

same 
same 

same 
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Introduction 

 For pipes with variable diameter, m is still the same due to 

conservation of mass, but V1 ≠ V2 

D2 

V2 

2 

1 

V1 

D1 

m m 
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LAMINAR AND TURBULENT FLOWS 

 Laminar flow: characterized by 

smooth streamlines and highly 

ordered motion. 

 Turbulent flow: characterized by 

velocity fluctuations and highly 

disordered motion. 

 The transition from laminar to 

turbulent flow does not occur 

suddenly; rather, it occurs over some 

region in which the flow fluctuates 

between laminar and turbulent flows 

before it becomes fully turbulent. 
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Reynolds Number 
 The transition from laminar to turbulent flow depends on the 

geometry, surface roughness, flow velocity, surface temperature, 

and type of fluid, among other things. 

 British engineer Osborne Reynolds (1842–1912) discovered 

that the flow regime depends mainly on the ratio of inertial 

forces to viscous forces in the fluid. 

 The ratio is called the Reynolds number and is expressed for 

internal flow in a circular pipe as 
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Reynolds Number 

 At large Reynolds numbers, the inertial forces are large relative to 

the viscous forces  Turbulent Flow 

 At small or moderate Reynolds numbers, the viscous forces are 

large enough to suppress these fluctuations  Laminar Flow 

 The Reynolds number at which the flow becomes turbulent is 

called the critical Reynolds number, Recr. 

 The value of the critical Reynolds number is different for different 

geometries and flow conditions. For example, Recr = 2300 for 

internal flow in a circular pipe. 
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Reynolds Number 

 For flow through noncircular 
pipes, the Reynolds number is 
based on the hydraulic 
diameter Dh defined as 

 

 

Ac = cross-section area 

P = wetted perimeter 

 The transition from laminar to 
turbulent flow also depends on 
the degree of disturbance of the 
flow by surface roughness, pipe 
vibrations, and fluctuations in 
the flow. 
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Reynolds Number 

 Under most practical 

conditions, the flow in a 

circular pipe is 

 

 

 

 In transitional flow, the 

flow switches between 

laminar and turbulent 

randomly. 
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LAMINAR FLOW IN PIPES 

 In this section we consider the 
steady laminar flow of an 
incompressible fluid with 
constant properties in the fully 
developed region of a straight 
circular pipe. 

 In fully developed laminar flow, 
each fluid particle moves at a 
constant axial velocity along a 
streamline and no motion in the 
radial direction such that no 
acceleration (since flow is 
steady and fully-developed). 
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LAMINAR FLOW IN PIPES 

 Now consider a ring-shaped differential 

volume element of radius r, thickness dr, 

and length dx oriented coaxially with 

the pipe. A force balance on the volume 

element in the flow direction gives 

 

 

 Dividing by 2pdrdx and rearranging, 
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LAMINAR FLOW IN PIPES 

 Taking the limit as dr, dx → 0 gives 

 

 

 Substituting t = -m(du/dr) gives the desired equation, 

 

 

 The left side of the equation is a function of r, and the 
right side is a function of x. The equality must hold for 
any value of r and x; therefore, f (r) = g(x) = constant. 
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LAMINAR FLOW IN PIPES 

 Thus we conclude that dP/dx = 

constant and we can verify that 

 

 

 Here tw is constant since the 

viscosity and the velocity profile 

are constants in the fully developed 

region. Then we solve the u(r) eq. 

by rearranging and integrating it 

twice to give 

 

 

r2 
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LAMINAR FLOW IN PIPES 

 Since u/r = 0 at r = 0 (because of symmetry about the centerline) 

and u = 0 at r = R, then we can get u(r) 

 

 

 Therefore, the velocity profile in fully developed laminar flow in a 

pipe is parabolic. Since u is positive for any r, and thus the dP/dx 

must be negative (i.e., pressure must decrease in the flow direction 

because of viscous effects). 

 The average velocity is determined from 
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LAMINAR FLOW IN PIPES 

 The velocity profile is rewritten as 

 

 

 Thus we can get 

 

 

 Therefore, the average velocity in fully developed laminar pipe 

flow is one half of the maximum velocity. 
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Pressure Drop and Head Loss 
 The pressure drop ∆P of pipe flow is related to the power 

requirements of the fan or pump to maintain flow. Since dP/dx = 

constant, and integrating from x = x1 where the pressure is P1 to 

x = x1 + L where the pressure is P2 gives 

 

 

 The pressure drop for laminar flow can be expressed as 

 

 

 

 ∆P due to viscous effects represents an irreversible pressure loss, 

and it is called pressure loss ∆PL to emphasize that it is a loss. 
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Pressure Drop and Head Loss 

 In the analysis of piping systems, pressure losses are 

commonly expressed in terms of the equivalent fluid 

column height, called the head loss hL. 

 

(Frictional losses due to viscosity) 
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Friction Losses     

 

 

 

 

2

v
Sρ

F
f

2

k
 

 

where Fk is the characteristic force, S is the friction surface area. This 

equation is general and it can be used for all flow processes. 

The resulting pressure (energy and head) losses are usually 

computed through the use of modified Fanning’s friction 

factors: 

   
22

21

2

2

21

2

k

v2ρ

D

L

Δp

v2Lρ

Dpp

2

v
L)ρ(Dπ

4

πD
pp

2

v
Sρ

F
f 





Used for a pipe: 

where Fk is the press force, S is 

the area of curved surface. 

Rearranged, we get a form of 

pressure loss: 

 
2

ρv
ζ

2

ρv

D

L
λ

2

ρv

D

L
4fΔp

222

L 



Determination of Friction Factor with Dimensional 

Analysis 

The Funning’s friction factor is a function of  

Reynolds number, f  = f(Re):  μ

vDρ

ν

vD
Re 

Many important chemical engineering problems cannot be solved completely by 

theoretical methods. For example, the pressure loss from friction losses in a long, 

round, straight, smooth pipe depends on all these variables: the length and diameter 

of pipe, the flow rate of the liquid, and the density and viscosity of the liquid.  

If any one of these variables is changed, the pressure drop also changes. The 

empirical method of obtaining an equation relating these factors to pressure drop 

requires that the effect of each separate variable be determine in turn by 

systematically varying that variable while keeping all others constant.  

It is possible to group many factors into a smaller number of dimensionless groups 

of variables. The groups themselves rather than separate factors appear in the final 

equation. These method is called dimensional analysis, which is an algebric 

treatment of the symbols for units considered independtly of magnitude. 

104 



Determination of Friction Factor with 

Dimensional Analysis 
 

Many important chemical engineering problems cannot be solved completely by theoretical 

methods. For example, the pressure loss from friction losses (or the pressure difference              

between two ends of a pipe) in a long, round, straight, smooth pipe a fluid is flowing 

depends on all these variables: pipe diameter d, pipe length  , fluid velocity v, fluid density   

,  and fluid viscosity    .  

p1 p2 

ρ μ
21 ppΔp 

l

l

105 



106 

The relationship may be written as: 

The form of the function is unknown, but since any function can be expanded as a power 

series, the function can be regarded as the sum of a number of terms each consisting of 

products of powers of the variables. The simplest form of relations will be where the 

function consists simply of a single term, when: 

The requirement of dimensional consistency is that the combined term on the right-hand 

side will have the same dimensions as that the on the left, i.e. it must have the dimensions 

of pressure. 

Each of the variables in equation (2) can be expressed in terms of mass, length, and time. 

Thus, dimensionally: 

   1μρ,v,,D,fΔp l

 2μρvDconstΔp edcbal

1

3

121

TMLμL

MLρLD

LTvTMLΔp













l

i.e.: 
e11d3c1ba21 )T(ML)(ML)(LTLLTML  



107 

The conditions of dimensional consistency must be met for the fundamentals of M, L, and 

T and the indices of each of these variables can be equated. Thus: 

In 

ec2T

e3dcba1L

ed1M







Thus three equations and five unknowns result and the equations may be solved in terms 

of any two unknowns. Solving in terms of b and e: 

 

T)inequationthe(frome2c

Minequationthefrome1d





   

eba

eba0

ee13e2ba1







Substituting in the L equation: 
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Thus, substituting into equation (2): 

     ρvρμDvDconst

μρρvvDDconst

μρvDconstΔp

2e1b1

eee2beb

ee1e2beb













l

l

l

eb

2 μ

ρDv

D
const

vρ

Δp




















l

i.e. 

2

k
const Let:  

Thus: 
e

b

2
Re

D2

k

vρ

Δp 










l

2

vρ

DRe

k
Δp

2b

e










l

b=1, and k and e have to determinate by experiments.  

For laminar flow k=64 and e=1 

For turbulent flow k=0,0791 and e=0,25. 

2

vρ

D
4f

2

vρ

DRe

k
Δp

22

e

ll

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dcba μρvconst.D
L

Δp


    

 
d



























 ms

kg

m

kg

s

m
m

mm

N
c

3

b

a

2

     d11c3b1a22 TMLMLLTLLMT  

   1dd3ccbba22 TLMLMTLLLMT  

 μρ,v,D,f
L

Δp


If a theoretical equation for this problem exist, it can be written in the general 

form.  List of relevant parameters:  

If Eq.1. is a valid relationship, all terms in the function f must have the same 

dimensions as those of the left-hand side of the equation          .  

Let the phrase the dimensions of be shown by the use of brackets. Then any 
term in the function must conform to the dimensional formula 

Δp/L
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M:  1 = c+d 

 L: -2 = a+b -3c - d 

   T:    -2 = -b - d 

dd1d2d1 ηρvDconst
L

Δp 

D

ρv

η

Dvρ
const.

L

Δp 2d











2

ρv

D

1

η

Dvρ
A

L

Δp 2d













dRe

A
f 

2

ρv

D

L
fΔp

2



M: c=1-d 

T: b=2-d 

L: a=-2-b+3c+d=-2-2+d+3-3d+d 

 a=-1-d 
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 Fluid Flow in Pipes 

2

v
Sρ

F
f

2

k

The resulting pressure (energy and head) loss  

is usually computed through the use of  the modified Fanning friction factor: 

   
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where Fk is the press force, S is the area of  curved surface. Rearranged, we get a form of  pressure 

loss: 

  

The Funning’s friction factor is a function of  Reynolds number, f  = f(Re):  

μ

vDρ

ν

vD
Re 
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Goals: determination of  friction losses of  fluids in pipes or ducts, and of  pumping power 

requirement. 

Used for a pipe: 

   
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